Averaging of kernel functions
نویسندگان
چکیده
منابع مشابه
Averaging of kernel functions
In kernel-based machines, the integration of a number of different kernels to build more flexible learning methods is a promising avenue for research. In multiple kernel learning, a compound kernel is build by learning a kernel that is a positively weighted arithmetic mean of several sources. We show in this paper that the only feasible average for kernel learning is precisely the arithmetic av...
متن کاملInvariant Texture Classification Using Group Averaging with Relational Kernel Functions
In this paper we propose a novel method for the construction of textural features which are invariant with respect to 2D Euclidean motion and strictly increasing grey scale transformations. Our approach is based on a group averaging technique with relational kernel functions. In order to allow for comparison the evaluation of our approach was done on two image data sets taken from the Brodatz a...
متن کاملLocal Self-concordance of Barrier Functions Based on Kernel-functions
Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier function for the domain of the problem that has to be solved. Recently, a wide class of new barrier functions has been introduced in which the functions are not self-concordant, but despite this fact give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier functio...
متن کاملWeakly Monotone Averaging Functions
Monotonicity with respect to all arguments is fundamental to the definition of aggregation functions. It is also a limiting property that results in many important non-monotonic averaging functions being excluded from the theoretical framework. This work proposes a definition for weakly monotonic averaging functions, studies some properties of this class of functions and proves that several fam...
متن کاملKernel Averaging Estimators and Parsimonious Model Averaging with a Diverging Number of Parameters
of "Kernel Averaging Estimators" Bandwidth or smoothness parameter selection has always been a key issue for kernel regression analysis despite the fact that kernel regression has rapidly become a regular tool for explorative empirical research. The issue of bandwidth selection is a fundamental model selection problem stemming from the uncertainty about the smoothness of the regression. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2013
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2012.11.044